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This paper investigates the agglomeration of active walkers (component A) on a two- 
dimensional surface, described by a potential U(r, t), that determines the motion of the 

walkers. The walkers are able to change U(r, t) locally by producing a second component B, 

that decreases U(r, t) and which can diffuse and decompose. The nonlinear feedback between 

the spatio-temporal density distributions of both components results in a clustering of the 

walkers. The analytic description is based on a set of Langevin and Fokker-Planck equations 

for the active walkers, coupled by a reaction-diffusion equation for the component B. We 

investigate the stability of homogeneous solutions, the selection equation and an effective 

diffusion coefficient, which is negative in the case of the agglomeration process. Computer 

simulations demonstrate the time evolution of the surface potential at two different time 

scales: the scale of independent growth and of competition of the attraction regions. They 

also show the time-dependent distribution of the active walkers and spatio-temporal 

development of the effective diffusion coefficient. 

1. Introduction 

Recently, much effort has been done to study the formation of DLA 
(diffusion-limited aggregation)-like structures by diffusing Brownian particles 
(for a review, see [l]). Random walkers that stick with a certain probability to 
a cluster seem to be the appropriate tool to simulate the dynamics of the 
DLA-cluster growth, which is determined by the time scale of diffusion only. 

In addition to simple DLA, there are also cases where the sticking 
probability may depend on local variables, which can change on a time scale 
comparable to diffusion, and the system. is better described in terms of coupled 
reaction-diffusion equations [2]. 

We consider a special type of reaction-diffusion systems, where the particles 
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are able to change the local conditions themselves, which is expressed in the 

term “active”. In our case, it means that the particles do not just move on a 

surface, but also interact with it. This surface should be described by a 

potential U(r, t), and the particles are capable (i) of recognizing and (ii) of 

altering this potential, e.g. by local chemical reactions. On the other hand, a 

change of the potential should have a feedback on the “behaviour” of the 

particles. 

Both, motion of the particles and interaction with the potential, can be 

determined depending on the problems to be described and should cover a 

wide range of applications. Recently, the model of active walkers has been 

used to describe the growth of neurons in the retina [3], the dielectric 

breakdown in a liquid [3], or the generation of rough surfaces [4,5]. It has also 

been applied to the construction of path networks [6] and the simulation of 

foraging patterns of ants [7]. 

2. Assumptions for interaction of the particles 

We consider a two-component model. The particles of the component A are 

the active walkers, moving on a surface characterized by a potential U(r, t). 

The term “active” means that the walkers are able to interact with the surface 

and thus change the potential. U(r, t) therefore may consist of two parts, 

w-, 4 = U&r, t) + U&, t) , (1) 

where Uo(r, t) means the background, that can change with time and can be 

influenced by external fields (like the environmental potential in ecology), and 

U,(r, t) is the part of the potential that is changed by the walker. 

In order to specify this change we assume that the particles of component A 

constantly produce a substance of component B at a rate q [l/s] just at the 

place where they are: 

A:A+B. (2) 

If b(r, t) denotes the surface density [particles/m21 of component B, the surface 

potential shall be influenced by B in the following way: 

U(r, t) = u, - gb(r, t) . (3) 

Here the potential U,, is set to be constant and g means some dimensional 

constant [(m*/s)*MlN,], where M is the molar mass and NA is the Avogadro 

number. 



F. Schweitzer, L. Schimansky-Geier I Clusrering of “active” walkers 361 

We consider that B can independently diffuse at the surface with a diffusion 
coefficient D, [m*/s] and also decompose with time, where y [l/s] is the 
reaction coefficient of the decomposition. That means, the density of B has to 
obey a reaction-diffusion equation, 

___ = -yb(r, t) + q i 6(r - Ri(t)) + D, Ab(r, t) . 
at+-, t> 

dt I=1 
(4) 

Ri means the position of the active walker number i (i = 1, . . . , N) (it denotes 
the space coordinate on the two-dimensional surface) and 6 is the delta 
function. 

particles of component B. Thus we have a nonlinear 
dynamics of the particles of both components A and B 
chemotuxis, e.g. of ants which lay a pheromone into the 
their orientation. 

The active walker prefers to turn to the local minima of U(r, t) - that means 
to the highest value of b(r, t) - but on the other hand it only produces the 

feedback between the 
that reminds us of the 
ground [S] to use it for 

3. Equations of motion for the active walker 

The equation of motion for the N active walkers 

RI,.. . , R, is given by the following Langevin equation: 

dRi 
Y=dt? 

with the positions 

(5) 

/I is the friction coefficient of the walker (m = l), U(r, t) is the potential of the 
surface as introduced in eq. (3), and &(t) is a white random force. As is well 
known, for times t S t, = l/p the Langevin equation can be reduced to the 
Einstein-Smoluchowski limit [9,10] 

(6) 

Inserting U(r, t) (eq. (3)) we get the equation of motion for the single active 
walker as 

(7) 
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The first part of eq. (7) describes the fact that the walker (component A) 

follows the concentration gradient of component B whose time dependence is 

given by eq. (4), whereas the second part represents the noise that keeps it 

moving away. 

We now go from the discrete description of the single walkers of component 

A to the space- and time-dependent walker density U(Y, t) by 

4 ,$r %r - Mt)) + qN&, t) -+ qa(r, t) , (8) 

where p(r, t) means the probability density to find a walker at the point r for a 

given time. Since the motion of the particles of component A obeys a Langevin 

equation (6), for the density a(r, t) the related Fokker-Planck equation holds: 

Wr, t) Mr, t) kl3T ~=- 
at 

-pa(r, t) + D,T , D,=- 
P 

(9) 

D, is the diffusion coefficient of the particles of component A. The derivative 

of the potential is given by the gradient of the substance B, again: 

Wr, t) ~=_ ------a(r,t)+D,F (10) 

Introducing the distribution a(r, t), the reaction-diffusion equation (4) for 

b(r, t) can be rewritten as 

Wr, f> 
~ = --yb(r, t) + qa(r, t) + D, Ab(r, t) . 

at (11) 

Both equations, (10) and (ll), have to be solved simultaneously to find the 

spatio-temporal distributions for the components A and B. 

4. Stability analysis for homogeneous distributions 

Eqs. (10) and (11) have a homogeneous solution, given by the average 

densities of component A and B: 

N 
ahorn= (u(r,t)) =-=uo, 

S 
N = 

I 
a(r, t) dr , 

b hom = (b(r, t)) =%= b, , B,,, = b(r, t) dr . (12) 

S 

The surface S on which the particles move is treated as a torus; that means, it 
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acts like a closed system. Therefore, diffusion cannot change the total amount 
B,,, of component B, which obeys the equation 

dBt,t ~ = - yB,,, + qN . dt (13) 

Assuming the initial condition B,,, = 0 for t = 0, the solution of eq. (13) is 
given by 

B,,&) = ; N(l - eeY’),Tm : N . (14) 

Eq. (14) means that after an initial period, given by the time 

the total amount of component B in the system has reached more than 99 
percent of a constant that depends on the ratio between the production and the 
decomposition rates, q/y, and on the total number N of particles that produce 
B. 

Assuming B,,, = const., the homogeneous solution (eq. (12)) for B is then 
given by 

b =qN& 
0 

YS YO’ 
(16) 

Let us prove now the stability of the stationary state given by eqs. (12) and 
(16). Therefore, we allow small fluctuations around a, and b,: 

a(r, t) = a, + su ) b(r, t) = b, + Sb ) 
1$~-~$1. 

Inserting eq. (17), linearization of eqs. (10) and (11) gives 

aSa -= -%,A6b+D,AZa, at p 
a 6b 

-=-ytib+qti+D,AFb. at 

(17) 

(18) 

With 

Sa - 6b - exp( At + ik - r) (19) 
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the dispersion relation for small inhomogeneous fluctuations with wave 
numbers k yields 

A 1.2 = - 3b + k2(D, + WI 

AI li $y + k2(D, + Db)12 - k2D,(y + k2D,) + k2$ qa, . P-0) 

For homogeneous fluctuations (k = 0) we obtain 

A, = --Y > A, =o for k = 0 , (21) 

expressing the conservation of the total number of active walkers and the 
stability of the field b(r, t) for this case. On the other hand, the system is stable 
against inhomogeneous fluctuations (k # 0) as long as the following relation 
holds: 

k,T D,=--->D:Tit 
P =ji,y;,). (22) 

Eq. (22) determines a critical diffusion coefficient of component A, below 
which inhomogeneous fluctuations of a certain size result in a self-collapsing 
behavior of the system for a given temperature. From the limit k-t0 we can 
obtain a critical temperature T, from eq. (22), where for T > T, the system 
remains stable even against large fluctuations; 

T =&@! 
c k, yS ’ (23) 

For T < T, we do not expect a homogeneous system, but the establishment of 
inhomogenities in the distributions U(Y, t) and b(r, t). This should be evaluated 
during the following computer simulations of the coupled kinetic equations 

(IO), (11). 

5. Results of computer simulations 

Generally, the simulated “behavior” of an active walker obeys the following 
schedule: 
1. the walker checks the local potential U(r, t); 
2. depending on the value of I/Q-, t) the walker makes a decision for the next 

step: (a) deterministic active walker: it follows this decision always, (b) 
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probabilistic active walker: caused by the influence of noise it follows this 
decision only with a certain probability; 

3. the walker changes the local potential depending on a special rule to be 
determined; 

4. the walker moves (stepwise); repeat 1. 
In the considered case the local potential is given by the density of 

component B. Since B is produced by A, the condition at t = 0 is 

U(r, 0) = U, = const., b(r, 0) = 0 for all I E S . (24) 

The N active walkers are initially randomly distributed on the surface. Their 
motion is simulated on a two-dimensional hexagonal lattice with periodic 
boundary conditions. Since the walker makes its decision for the next step 
before changing the local potential, the motions of the walkers are updated 
sequentially; it is also allowed that a site is occupied by more than one walker. 

The walker is able to recognize the potential of its six nearest-neighbor sites 
and to compare it with the potential value on its site; that means, it measures 
the local potential gradient. It then makes its decision for the next step as a 
probabilistic walker: 
(i) If there is no attractive potential around, it makes a random choice. 

(ii) If there is an attractive potential, it recognizes the lowest value and 
chooses the direction towards the minimum. But this choice is accepted 
only with a probability 1 - n and, with a probability 77, it makes a random 
choice again. 

Here n represents the noise in the system. Caused by the noise, the walker 
sometimes ignores the attraction of the potential and finds itself out of the 
potential minima. Since the noise keeps the walker moving, it is identified with 
the diffusion coefficient of the active walkers, D,, and depends on the 
temperature by eq. (9). For the simulations, 77 is given as some portion of a 
critical temperature, Tl T,, where T, is determined by eq. (23). 

At every site visited the active walker produces some amount of component 
B and therefore decreases the local potential (eq. (3)). But, since the walker is 
attracted by the potential minima, this procedure involves a major problem: In 
most of the cases the walker should recognize the most attractive potential on 
the site that it has just left. This should lead to a recursive forth-and-back step 
cycle rather than to a move of the particle. On the other hand, the noise can 
push the walker out of the potential minima, which are also flattened by 
diffusion and decomposition of component B. 

The density profile of component B (which is the negative of the potential), 
that results from diffusion, decomposition and from the interaction between 
the components A and B (eq. (ll)), . p is resented in the time series of figs. 1 
and 2. The related positions of the active walkers are shown in fig. 3. 
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Fig. 1. Evolution of the particle density b(r, t) (eq. (11)) d uring the growth regime. Time in 
simulation steps: (a) t = 10, (b) t = 100, (c) t = 1000. Parameters: N = 100, S = 100 X 100, T = 0.4T, 

(~=0.4), q=80, y=O.OOl, D,=O.Ol. 

For the decomposition rate, y = 0.001, used during the simulation, we can 

conclude from eq. (14) that at t = 5000 the production of B has reached its 

stationary value, leading to a competitive regime for the further dynamics. Fig. 

1 presents the evolution of the density b(r, t) during the regime of independent 

growth. The random density spots, produced by the 100 active walkers in the 

very beginning (fig. la) evolve into a very jagged surface profile characterized 

by a reduced number of peaks of comparable height (fig. lc) at about t = 1000. 
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Fig. 1. (Contd.) 

The same picture is seen in fig. 2a on a scale reduced by ten. Fig. 2b gives 
the density distribution at the beginning of the competition process, which 
relaxes after a long time into a one-peak distribution, as already indicated in 
fig. 2d. Fig 3 shows the related clustering of the active walkers. For the late 
stages, the positions of the large clusters are identical with the maxima of the 
density of component B, the distributions of which around the peaks are 
determined by diffusion. 

6. Discussion of two quasistationary limiting cases 

6.1. Derivation of a selection equation 

As indicated by the computer simulations above, the spatio-temporal 
evolution of the densities of the components A and B follows a two-step 
scenario: During the initial period (t < T, where 7 is given by eq. (15)), there is 
a nearly independent production of component B by the active walkers, 
leading to a nearly independent growth of the attraction areas of the potential. 
But, since the total amount of component B reaches a constant (eq. (14)), for 
times t > T, these attraction areas compete against each other for the limited 
amount of component B - and therefore compete for the active walkers. This 
necessarily leads to a selection between the most attractive areas. 
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Fig. 2. Evolution of the particle density b(r, t) (eq. (11)) d wing the competition regime. Time in 

simulation steps: (a) t = 1000, (b) t = 5000, (c) t = 10000, (d) t = 50000. The density scale is 0.1 

times the scale of fig. 1. (a) is the same as fig. lc and illustrates the differences of the scales. 

Parameters: see fig. 1. 

For the further discussion of this process the reaction-diffusion equation (11) 

can be rewritten as 

W, t) 
- 

b0 

+ D, Ab(r, t) , (25) 
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(c) 

(4 

Fig. 2 (Contd) 

where a, and b, are the homogeneous solutions (eqs. (12), (16)), yielded for 

t > 7. 

Let us here discuss the limiting case that a(r, t) relaxes faster, compared to 
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Fig. 3. Actual position of the active walkers during the simulation of figs. 1, 2. Time in simulation 

steps: (a) t = 100, (b) t = 1000, (c) t = 5000, (d) t = 10000, (e) t = 25000, (f) t = 50000. Parameters: 

see fig. 1. 

b(r, t), into a stationary state. The stationary solution for a(r, t) results from 

the Fokker-Planck equation (10) via 

D Wr, f> g Wr, f) 
a --------a(r, 1) = const. , 

dr P dr 

leading to 

a stat exP[(g~k,Wb(r, t)l 
=LZ 

’ (expk& Wk 91) s ’ 

(exp[(glk,T)b(r, t)l> s = i 1 exp[(glk, TM-‘, t)ldr’ . 
S 

(27) 

That means, in the limiting case of fast relaxation of a(r, t), the density 

distribution of the active walkers quasistationary follows the slowly varying 



F. Schweitzer, L. Schimansky-Geier I Clustering of “active” walkers 371 

distribution b(r, t). After inserting a(r, t) = astat (eq. (27)) into eq. (25) the 

time dependence of b(r, t) is given by 

W, t> Ybcl -= 
at (exp[(glk, W(r, t)l> s b(r’ t, 

x exp[(glk,V4r, t)l (exp[(g~~,~)b(r~ t)l)s ( _ 
b(r, t> bo i 

+ D, Ab(r, t) . (28) 

Neglecting the diffusion term, this equation has an obvious analogy to the 

selection equations of the Eigen-Fisher type (see e.g. [ll]): 

$=x~(E,-(EJ), 
C E-X. 

(4) =+-$f, 
I I 

(29) 

where Ei is the fitness of species i and ( Ei) is the mean fitness representing the 

global selection pressure. For the system considered here, we identify in eq. 

(28) the first term between the brackets as the local fitness and the second term 

as the global fitness. In order to guarantee a local growth of the density b(r, t), 

the local fitness has to be larger than the global one, which depends 

exponentially on the total density distribution. 

As a result of this process we find an increasing inhomogeneity in the density 

b(r, t), but on the other hand the growth of the spikes (domains of high 

density) also leads to an increase of the global selection pressure and a slowing 

down of the kinetics, as indicated by the prefactor of eq. (28). This selection 

should result in a decreasing number of spikes and finally into the establish- 

ment of only one large peak, which is also shown in the computer simulations. 

For the late stage of the selection process, where only a few large and 

well-separated spikes exist, eq. (28) allows an estimation of the time scale of 

their survival or decay. Neglecting diffusion again, the decision between 

growth or decay of a peak is given by the sign of the term in brackets in eq. 

(28). 
Since in the late stage the ratio (eq. (30)) for the largest spikes has an 

amount of the order one, 

exp[db Wk t)h 
(exp[(g~b VW, 41) $O-, 9 - ’ ’ (30) 

we get the estimation for the growth or decay of the peaks as 
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b(r, t) - eYf if exp[klhWr, t>lbo > (exp[(glk, V(r, 91) &(r, t) 
(survival) , 

b(r, t) - e -” if exp](g/k,V(r, t)lbO < (exp[(glk,T)b(r, 91)&r, t) 

(decay) . (31) 

The estimated exponential growth and decay is, of course, modified by the 

diffusion of component B. 

We want to underline the striking similarities of the spikes discussed here to 

pattern formation in active media [12]. In a similar way Mikhailov and 

Meinkoehn considered gliding bugs and crawling droplets at surfaces in 

physico-chemical systems [13]. If, on the other hand, the growth of the spikes 

is limited by introducing a saturation value in the generation of the B-field, as 

suggested in [14], these spikes should become broad domains performing an 

Ostwald ripening process, similar to a case discussed in [15]. 

6.2. Estimation of an effective diffusion coef$cient 

Let us now turn to the limiting case that a(r, t) relaxes slower, compared to 

b(r, t), into a stationary state. 

By introducing an effective diffusion coefficient Dzff for the particle density 

a(r, t), the Fokker-Planck equation (10) can be written in terms of a usual 

diffusion equation, 

g wr, t) 
, Dzf’=D,---- 

/3 aa(r, t) a(r’ t, (32) 

D zff depends on the distribution of the active walkers, a(r, t) and on the 

relation between the densities b(r, t) and a(r, t). As indicated by eq. (14), for 

the latter only a global relation holds for t > T: 

1 b(r, t) dr = $ 1 a(r, t) dr . 
s s 

(33) 

If b(r, t) relaxes faster, compared to a(r, t), into its stationary state and the 

further discussion is restricted to the limit case of small diffusion of component 

B, we get instead of eq. (33) the relation 

ab(r, t) 
~ = O+ b(r, t) = : a(r, t) , at ifDb+O. 
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Inserting eq. (34), the effective diffusion coefficient for the particles of 
component A (eq. (32)) reads 

D zff = D, - ;: a(r, t) = $ [k, T - gb(r, t)] . (35) 

We notice that the effective diffusion coefficient is not necessarily always larger 
than zero, which means a spreading of particles over the whole surface. It can 
also be less than zero, resulting in a lump of particles that keep themselves only 
in a certain region on the surface. Depending on the spatio-temporal density 
distribution b(r, t), at the same time Dzff can have quite the opposite effect at 
different places. 

4.3. Relation to nucleation theory 

The results obtained from the two limit cases discussed above have an 
obvious analogy to nucleation theory. Selection equations like eq (28) are also 
found to describe the process of Ostwald ripening among clusters of different 
sizes, that can occur in the late stage of first-order phase transition [16]. 

On the other hand, we also have phase transitions, where not one single 
global selection parameter describes the coarsening of the system, but the 
growth or decay of clusters is governed by local critical parameters like the 
local supersaturation [17] changing with time in dependence of the interaction 
in the system. The effective diffusion coefficient (eq. (35)) plays the role of 
such a local critical parameters and, therefore, i;- the following it should be 
discussed in terms of a local supersaturation. 

Considering a usual phase diagram, nucleation occurs only inside the 
coexistence curve, which divides the homogeneous system from the two-phases 
region. In our case, the phase separation is given by the agglomeration of the 
active walkers, and the phase separation line is defined by Dzff = 0, determin- 
ing an equilibrium density b,,(T) that depends only on temperature: 

eff D, =O, 
kl3T 

k,(T) = g. 

Calculating the ratio we get 

D eff 
b(r, t) 

s(r, t, T) = e = 1 - ~ 
a b,,(T) ’ 

(37) 
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where b(r, t)lb,,(T) > 1 defines the local supersaturation. For the model 

considered, the local production of component B leads to an increase of b(r, t) 

and therefore, after a certain time lag, to a supersaturated state with b(r, t) > 

b,,(T). Then Dzff becomes negative and the attraction of the active walkers 

can occur at some critical value of the local supersaturation. 

In order to determine the equilibrium value b,,(T) we consider the critical 

temperature T, of the system, where Dzff has to be positive always, because no 

agglomeration occurs for T > T,. 
Inserting the expression for T, (eq. (23)) into eq 

equilibrium density b,,(T,) 

k,Tc 4ot @’ 
k_,(T,)=g=~=y~’ 

which occurs with the mean density of component 

expression for the equilibrium concentration: 

(21), we get for the 

(38) 

B. This leads to the 

(39) 

We are now able to recalculate the spatio-temporal distribution of the effective 

diffusion coefficient E(T, t, T) (eq. (37)) within the limit that is given by the 

quasistationary assumption for b(r, t) (eq. (34)). This is applied to the 

computer simulations carried out in figs. 2, 3. 

In fig. 4 the black areas indicate a negative effective diffusion coefficient, 

leading to an agglomeration of the active walkers. We want to notice its 

inhomogeneous distribution. As shown, the attraction area is decreasing with 

time in diversity as well as in area, indicating the selection process among the 

attraction areas and the clustering of the walkers. 

Eq. (39) also helps us to understand how a change of the decomposition rate 

y or the temperature (-noise 7) changes the agglomeration process: A larger y 

increases the supersaturation, and, as is known from eq. (15), also the 

selection process starts earlier. This situation is shown in fig. 5, where y is ten 

times larger than before. The initial situation for the simulation is the same as 

in the figures discussed above, but the competition starts already at t = 500, 
and the distribution of the density b(r, t) as well as the effective diffusion 

coefficient show a much larger diversity at this time. Therefore, the whole 

process of selection and agglomeration of the active walkers takes a much 

longer time, as can be seen by comparing fig. 2d and fig. 5c, which are taken 

after the same number of simulation steps. 
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Fig. 4. Spatio-temporal evolution of the effective diffusion coefficient a(r, t, T) (eq. (22)) during 

the simulation of fig. 2 (competition regime). The black area indicates E < 0, which means an 

attraction area for the active walkers; the grey area indicates E > 0. Time in simulation steps: (a) 

t = 5000, (b) t = 10000, (c) r = 25000, (d) t = 50000. Parameters: see fig. 1. 

7. Conclusions 

We have discussed a two-component reaction-diffusion system. Component 
A is “active” in the sense, that it is able (i) to recognize, and (ii) to change the 
local potential, which determines its further motion. This nonlinear feedback is 
simulated by a chemical reaction of A, describing the production of a second 
component B, that can also decompose and diffuse. Since the production of B 
reaches a stationary value, we found a two-step scenario for the evolution of 
the densities: an earlier stage of independent production of B, and a late stage 
of competition among the B-rich areas. The related distribution of component 
A shows the cluster formation of the active walkers in time. 

For the limiting case, where a(r, t) relaxes fast into a quasistationary 
distribution and follows the slowly varying density of component B, a selection 
equation for b(r, t) describes the crossover to a unimodal density distribution. 
If, on the other hand, the distribution of b(r, t) is quasistationary compared to 
the change of a(r, t), we found an effective diffusion coefficient for component 



376 F. Schweitzer, L. Schimansky-Geier I Clusterina of “active” walkers 

(4 

(W 

Fig. 5. Evolution of the particle density b(r, t) and the related effective diffusion coefficient 

e(r, t, T) during the competition regime for a decomposition rate: y = 0.01 (that is ten times larger 
than in figs. l-4). Time in simulation steps: (a), (d) t = 500; (b), (e) t = 10000, (d), (f) f = 50000. 

The density scale and the other parameters are the same as in fig. 1. 
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Fig. 5. (Contd.) 
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A that changes in space and time and can also be less than zero, leading to an 
agglomeration of the active walkers. 

We want to point out that the basic features discussed within this paper have 
a range of analogies in different processes, e.g. in chemotaxis. It has been 
shown recently [6,7] that the same model can produce a path network as well, 
when applying some special conditions obtained from ants. This network also 
results from the interplay between the nonlinear feedback and selection, 
described here, and remains stable in space and time in the limit of vanishing 
diffusion of component B. 

On the other hand, it seems that the active walker model, described here, is 
applicable to serve as a simple model for a communication process, that 
consists of three parts: 
1. “writing”: the walkers mark their place with a concentration; 
2. “reading”: the walkers check the local concentration field; 
3. “acting”: the walkers make a decision and follow the higher concentration. 
Communication is a collective process in which all walkers are involved; the 
information one produces affects the decisions of the other ones: it could be 
amplified during the evolution or disappear again. 
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